Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Alzheimers Dis ; 91(4): 1273-1276, 2023.
Article in English | MEDLINE | ID: covidwho-2264153

ABSTRACT

Wang et al. found that elderly COVID-19 patients were at risk of AD. The following facts suggest a possible explanation: reactivation of herpes simplex virus type 1 (HSV1) and other herpesviruses can occur in SARS-CoV-2 patients; in cell cultures, HSV1 infection causes occurrence of many AD-like features, as does reactivation of latent HSV1 after addition of certain infectious agents; recurrent experimental reactivation of HSV1-infected mice leads to formation of the main features of AD brains, and to cognitive decline. These suggest that COVID-19 results in repeated reactivation of HSV1 in brain, with subsequent accumulation of damage and eventual development of AD.


Subject(s)
Alzheimer Disease , COVID-19 , Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , SARS-CoV-2 , Herpesvirus 1, Human/physiology
2.
Front Cell Infect Microbiol ; 12: 1100695, 2022.
Article in English | MEDLINE | ID: covidwho-2198727

Subject(s)
COVID-19 , SARS-CoV-2 , Humans
3.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: covidwho-2163433

ABSTRACT

Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesviridae , Herpesvirus 1, Human , Humans , CRISPR-Cas Systems/genetics , Herpesvirus 1, Human/genetics , Herpes Simplex/genetics , Herpesviridae Infections/genetics , CRISPR-Associated Protein 9/genetics
4.
Journal of the Mexican Chemical Society ; 66(3):15, 2022.
Article in English | Web of Science | ID: covidwho-1988937

ABSTRACT

The pandemic COVID-19, caused by the organism severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the family Coronoviridae has become a serious global healthcare crisis. The biggest demand of the present time is to develop efficacious medication for the treatment of SARS-CoV-2. In the present study, we performed the interaction of 50 flavonoids selected from the Pubchem database, with five efficacious protein targets for SARS-CoV-2: main protease (Mpro), spike glycoprotein-receptor binding domain (SGp-RBD), RNA-dependent RNA polymerase (RdRp), angiotensin converting enzyme-2 (ACE-2) and non-structural protein15 (NSP15, an endonuclease). All the work involve in the present study was accomplished by using Maestro 12.4 (Schrodinger Suite) to obtain the docking scores and ADME-T study result of selected ligands with the five effective target proteins of SARS-CoV-2. Molecular docking-based results indicated that diosmin has the most favorable docking scores-10.16,-11.52,-9.75,-11.25 and-10.25 kcal/mol for the Mpro, SGp-RBD, ACE-2, RdRp and NSP-15 protein targets and had acceptable drug suitability as a therapeutic agent against COVID-19. The structure of this compound can be further useful to medicinal chemists, pharmacologists, and clinicians for efficiently discovering or developing effective drugs to cure COVID-19.

5.
Natural Product Communications ; 17(5):42, 2022.
Article in English | English Web of Science | ID: covidwho-1883390

ABSTRACT

The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.

6.
Vaccines (Basel) ; 9(6)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282660

ABSTRACT

This review describes investigations of specific topics that lie within the general subject of HSV1's role in AD/dementia, published in the last couple of years. They include studies on the following: relationship of HSV1 to AD using neural stem cells; the apparent protective effects of treatment of HSV1 infection or of VZV infection with antivirals prior to the onset of dementia; the putative involvement of VZV in AD/dementia; the possible role of human herpes virus 6 (HHV6) in AD; the seemingly reduced risk of dementia after vaccination with diverse types of vaccine, and the association shown in some vaccine studies with reduced frequency of HSV1 reactivation; anti-HSV serum antibodies supporting the linkage of HSV1 in brain with AD in APOE-ε4 carriers, and the association between APOE and cognition, and association of APOE and infection with AD/dementia. The conclusions are that there is now overwhelming evidence for HSV1's role-probably causal-in AD, when it is present in brain of APOE-ε4 carriers, and that further investigations should be made on possible prevention of the disease by vaccination, or by prolonged antiviral treatment of HSV1 infection in APOE-ε4 carriers, before disease onset.

7.
Phytomed Plus ; 1(2): 100027, 2021 May.
Article in English | MEDLINE | ID: covidwho-1032443

ABSTRACT

Background: In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose: LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods: Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results: This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion: This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.

8.
J Alzheimers Dis ; 78(3): 905-906, 2020.
Article in English | MEDLINE | ID: covidwho-874443

ABSTRACT

A recent study in vitro has shown that a sulphated polysaccharide, a type of fucoidan, has potent antiviral activity against SARS-Cov2. If the antiviral action were successful also for COVID-19 patients, it would be enormously valuable against not only acute disease but also long-term mental effects, which might include Alzheimer's disease (AD). In a trial of AD patients, the apparent success of treatment with a polysaccharide, GV971, was suggested to result from antiviral action against herpes simplex virus type 1 (HSV1) in brain, a pathogen strongly implicated in AD, and that sulphation of GV971, making it fucoidan-like, might increase its putative antiviral action. These data indicate that treatment of AD patients might be very effective using valacyclovir, a conventional antiviral, which inhibits viral replication, together with a fucoidan, which blocks virus entry into cells.

SELECTION OF CITATIONS
SEARCH DETAIL